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Abstract. A gauged SO(3) symmetry is broken into its closed subgroups by Higgs scalars
belonging to the irreducible representations characterized byj = 2, 3, 4 and 6. Explicit
matrix decompositions of the irreducible representations of SO(3) in terms of the irreducible
representations of the closed subgroups are made manifest. Analogous structures between the
line defects of liquid crystals and the cosmic strings are notified.

1. Introduction

The closed subgroups of SO(3) are well known to physicists through their applications in
crystallography and molecular physics. They are the cyclic groupsCn, dihedral groupsDn,
tetrahedral groupT , octahedral groupO, and the icosahedral groupY . There are also two
infinite closed subgroupsC∞ ≈ SO(2) generated by an arbitrary rotation around an axis
andD∞ which is generated byC∞ and a rotationπ around an axis orthogonal to the axis
of rotation ofC∞.

Louis Michel, in his remarkable paper [1], has given the list of the little groups of the
irreducible representationsj = 0–6. The little groups ofj = 0 andj = 1 are obviously
SO(3) and SO(2), respectively. The others are non-trivial and will be the topic of this paper.
It seems that many of these little groups manifest themselves in the phase transitions of
liquid crystals [2]. IfH is one of the closed subgroups of interest then the conjugacy classes
of the homotopy groupsπ1 of the coset space SO(3)/H classify the line defects of the liquid
crystals [3]. The homotopy groups satisfy the relationπ1(SO(3)/H) ≈ π1(SU(2)/H ′) ≈ H ′
if H ′ is the disconnected double cover ofH . TheH ′ is called the binary polyhedral group
and they constitute the finite subgroups of SU(2). Therefore the class multiplications of the
conjugacy classes of the binary polyhedral groups will be of great importance when two
line defects of liquid crystals coalesce [4].

Analogous structures are expected as cosmic strings when SO(3) is taken as a local gauge
symmetry [5]. These cosmic strings may arise from the GUT breaking [6] where SO(3)
may be embedded as a component of the family symmetry of leptons and quarks. There
has been a considerable interest in the finite subgroups of SO(3) or SU(2) to accommodate
the family structure of leptons and quarks [7].

Finite subgroups of SU(2) have also been a focus of interest from the mathematical point
of view. It is known as the McKay correspondence [8] which associates the columns of the
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character tables of the binary polyhedral groups with the eigenvectors of the incidence
matrices (2I-Cartan matrix) of the affine Lie algebrasÂn, D̂nÊ(Ê6, Ê7, Ê8). Here the
correspondence is respectively cyclic groups, dicyclic groups (double covers of the dihedral
groups), binary tetrahedral group, binary octahedral group and the binary icosahedral group.
Incidence matrices of these affine algebras also play crucial roles in the decomposition of
the irreducible representations of SU(2) into the irreducible representations of its finite
subgroups [9]. These features of the finite subgroups of SU(2) and the combinations of
line defects of liquid crystals as well as the cosmic strings will be the subject of a separate
publication [10].

Classification of the little groups of the irreducible representations of compact Lie groups
remains an unsolved problem although a great deal of investigation has been made along
this line [11]. Even for SO(3) further work is needed to clarify some of the confusion in the
literature. In what follows we obtain, in the canonical basis, explicit matrix decompositions
of the SO(3) irrepsj = 2, 3, 4, 6 in terms of the irreps of the closed subgroups of
interest. We identify the representation contents of the scalar fields. Assigning the vacuum
expectation values to the fields transforming as trivial representations of the closed subgroups
we obtain the masses of the gauge bosons of SO(3).

A similar work could have been done by taking the symmetric tensor fields of ranks
2, 3, 4 and 6 with suitable trace conditions [12]. Indeed, this type of approach has been
partly discussed in the phase transitions of liquid crystals [13]. In a different paper the
connections between these two approaches will be discussed [14].

The paper is organized as follows. In section 2 we discuss the generation relations of
the generators of the finite subgroups of SO(3) and SU(2) displaying examples from the
two-dimensional irreducible representations of SU(2). In section 3 we discuss the symmetry
breaking with the scalars in the irreducible representationsj = 2 andj = 3. Section 4
is devoted to the discussion of the problem forj = 4. Section 5 contains the study of
the j = 6 case where we obtain the dihedral groupsDn(n = 6, 5, 4, 3, 2) as well as the
icosahedral groupY as little groups. Finally, we discuss the implications of our approach
in physics in the concluding remarks. Matrices generating the irreducible representations 3,
4, 5 of the icosahedral group and the scalar fields of these representations are given in the
appendix.

2. Generators and the generation relations of the finite subgroups of SO(3) and SU(2)

The irreducible representations of SO(3) are all real; up to an equivalence, there is only one
such representation for each odd dimension 2j + 1, wherej is the angular momentum.
An arbitrary group element of SU(2) can be written as eiw·J where J are the usual
(2j + 1)× (2j + 1) matrix representations

J±φ(jm) =
√
(j ∓m)(j ±m+ 1)φ(jm± 1)

J3φ(jm) = mφ(jm)
(1)

whereφ(jm) are the basic vectors of the(2j + 1)-dimensional irreducible representation
of SU(2) whenj takes the values 0, 1

2, 1, 3
2, . . . ; integer values are for the SO(3) cases. In

our calculationsφ(jm) will stand for the scalar fields associated with the related irreducible
representations.

The finite subgroups of SU(2) can be generated by discrete rotations around the properly
chosen two axes. LetA andB denote such rotations. Then the generation relations of the
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finite subgroups of SU(2) and SO(3) are given by

Ap = Bq = Cr = Z (2)

whereC = AB, Z2 = 1 for SU(2) andZ = 1 for SO(3). We will also use occasionally
the notation of [15] for the designation of these groups; the polyhedral subgroups of SO(3)
are denoted by(pqr) and the notation〈pqr〉 will stand for the binary polyhedral subgroups
of SU(2). Here(pqr) takes the values (nn1) for the cyclic groups, (n22) for the dihedral
groups, while (332), (432) and (532) stand for the tetrahedral, octahedral and icosahedral
subgroups of SO(3), respectively. Heren is an integern > 1. Their double covers
are the binary polyhedral groups〈pqr〉. There are also two infinite subgroups of SO(3),
C∞ ≈ SO(2) generated by an arbitrary rotation around an axis, say the third axis, eiθJ3; and
the infinite dihedral group whose generators, in this paper, will be taken to beA = eiθJ3

andB = eiπJ1. The generation relation

BAB−1 = A−1 B2 = 1 (3)

can be used for all dihedral groups includingD∞.
In general, a rotation by an angleθ around an arbitrary axisQ = ηiJi , where|η| = 1,

can be written as eiθQ. For example, the generators

A = ei(2π/n)J3 B = eiπJ1 (4)

generate the dihedral groupDn, (n22), of order 2n, if j is an integer, otherwise they generate
the dicyclic group〈n22〉 of order 4n.

Below we list the generators and the generation relations of the polyhedral subgroups
of SO(3):

Finite subgroups
of SO(3) Generators Generation relations

Cn:(nn1) A = exp i2π
n
J3 An = 1

Dn:(n22) A = exp i2π
n
J3, B = exp iπJ1 An = B2 = C2 = 1

T:(332) A = exp i2π
3

1√
3
(J1+ J2+ J3) A3 = B3 = (AB)2 = 1, B = A2C

C = exp iπJ1

O : (432) A = exp i2π
4 J3 A4 = B3 = (AB)2 = 1

B = exp i2π
3

1√
3
(J1+ J2+ J3)

Y:(532) A = exp i2π
5
σJ1+J3√

2+σ A5 = B3 = C2 = 1

B = exp i2π
3 (−σJ2+ τJ3)

τ = 1
2(1+

√
5)

σ = 1
2(1−

√
5) (5)

Let us further illustrate this point giving an example from the familiar two-dimensional
representation of SU(2). The Lie algebra of SU(2) is represented byJi = σi/2 where
σi(i = 1, 2, 3) are the usual Pauli matrices. Consider the rotations

A = ei 2
3πQ, C = eiπ 1

2σ1 (6)

whereQ = 1
2
√

3
(σ1+ σ2+ σ3) with Q2 = 1

4.
They are given by the matrices

A = 1
2(1+ iσ1+ iσ2+ iσ3) C = iσ1 (7)

whereA3 = −1, C2 = −1, B = A†C = 1
2(1+ iσ1+ iσ2− iσ3), B3 = −1.
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Therefore the three generators,A, B, C, satisfy the generation relationsA3 = B3 =
(AB)2 = −1 as stated in (2) and generate the binary tetrahedral group〈332〉 of order 24.
The elements of the group are given by the 2× 2 unitary matrices.

±1,±iσ1,±iσ2,±iσ3,
1
2(±1± iσ1± iσ2± iσ3). (8)

A 3 × 3 matrix representation of the tetrahedral group of order 12 is either obtained by
substituting the 3× 3 matrix representations ofJi in (5) or taking the inner automorphism
of the binary tetrahedral group in (8).

3. Symmetry breaking with the Higgs scalars in the representationsj = 2 and j = 3

The standard Lagrangian of a local gauge theory without fermions is given by

L = − 1
4FµvF

µv − 1
2(Dµφ)

†(Dµφ)− V (φ) (9)

where the field strengthsFµv and the covariant derivativeDµ are given by

Fµv = ∂µWν − ∂νWµ + gWµ ×Wν

Dµ = ∂µ − igWµ, Wµ = J ·Wµ

(10)

with J being the(2j + 1)× (2j + 1) matrix representation obtained by the expression (1).
A general Higgs potential restricted by renormalization can be written as

V (χ) = α + βχaχa + γfabcχaχbχc + δgabcdχaχbχcχd (11)

whereχa(a = 1, 2, . . . ,2j + 1) are real scalar fields which can be defined in terms of the
complex scalar fieldsφ(jm). The tensorsfabc and gabcd should be chosen appropriately
for each irreducible representation of degree 2j + 1. The minimum of the Higgs potential
of (11) can be obtained by assigning the vacuum expectation values to the Higgs scalars
〈χa〉 = va. The details of the symmetry breaking patterns are very important which we will
discuss for the irreducible representationj = 2. The main objective of this paper is then
to identify the non-zero expectation values associated with the appropriate little groups of
SO(3). We start with the representations ofJ given in (1) whereφ∗(jm) = (−1)mφ(j−m)
(the same relation satisfied by the spherical harmonics) and transform it to a real basis of
field which we denoted byχ .

(a) j = 2 case
This irreducible representation has two little groupsD∞ and D2. In the φ(2m) basis
−26 m 6 2 the generators ofD∞ read

A = exp iwJ3 =


e2iw

eiw

1
e−iw

e−2 iw



B = exp iπJ1 =


1

1
1

1
1

 . (12)

Choosing the real fieldχ = T φ as

χ1 = 1√
2
(φ(22)+ φ(2− 2)) χ3 = 1√

2
(φ(21)− φ(2− 1))

χ2 = 1√
2

i(φ(22)− φ(2− 2)) χ4 = 1√
2

i(φ(21)+ φ(2− 1)) (13)

χ5 = φ(20)
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and transforming the generatorsA andB to the basis of theχ fields one gets

A′(w) = TAT † =
[
a(2w)

a(w)

1

]
B ′ = TAT † =

[
σ3

−σ3

1

]
(14)

where

a(nw) =
[

cosnw sinnw
− sinnw cosnw

]
n = 0, 1, 2, . . .

and

σ3 =
(

1 0
0 −1

)
is the third Pauli matrix.

It is clear from (14) thatA′(w) and B ′ are in the block diagonal forms where each
block represents an irreducible representation ofD∞. The groupD∞ has two irreducible
representations of degree 1 (one is the trivial representation) and an infinite number of two-
dimensional irreducible representations characterized by [m] [16]. FromA′(w) andB ′ we
conclude thatφ(20) transforms as a trivial representation while the fields (φ(22), φ(2−2))
and (φ(21), φ(2− 1)) transform as doublets of [2] and [1], respectively. By assigning the
vacuum expectation values toχ5, 〈χ5〉 = 〈φ(20)〉 = v5 the SO(3) symmetry is broken to
D∞ where(W1, W2) or W± gain equal masses whileW3 remains massless. The massive
gauge bosonsW± transform as a doublet of [1] ofD∞ generated by the matricesa(w) and
−σ3 while W3 belongs to the non-trivial representation of degree 1.

If we let w = π , A′(w) takes the form

A′(π) =
[
I

−I
1

]
I =

(
1 0
0 1

)
. (15)

Now A′(π) and B ′ generate the reducible representation of degree 5 ofD2. One can
immediately note that the fieldsχ1 and χ5 transform as the trivial representation of
D2. Assigning the vacuum expectation values to the fields〈χ1〉 = v1 =

√
2〈φ(22)〉 =√

2〈φ(2− 2)〉 and〈φ(20)〉 = v5 one can break the SO(3) symmetry to the subgroupD2 of
D∞. The gauge bosonsW1, W2 andW3 gain the masses

m2
1 = g2(v1+

√
3v5)

2 m2
2 = g2(v1−

√
3v5)

2 m2
3 = 4g2v2

1 (16)

and each transform as one of the non-trivial representations of degree 1 ofD2.
Now we would like to discuss the symmetry breaking patterns using the general potential

V (χ) given by (11). In almost all papers in the literature [17] the breaking SO(3) toD∞
or D2 is made by the use of a second rank symmetric traceless tensorTij = Tji, Tii = 0.

It is trivial to make one-to-one correspondence between the fieldsχa(a = 1, . . . ,5) and
the components of the tensorTij [14]:

T11 = 1√
2
χ1+ 1√

6
χ5 T22 = −1√

2
χ1+ 1√

6
χ5 T33 = −2√

6
χ5

T12 = 1√
2
χ2 T13 = 1√

2
χ3 T23 = 1√

2
χ4.

(17)

The potential of (11) in terms of the fieldTij would read

V (T ) = α + β Tr T 2+ γ Tr T 3+ δ[Tr T 2]2. (18)

Symmetry-breaking patterns of this potential have been discussed in condensed matter
physics associated with the phase transitions of the uniaxial and biaxial nematic liquid
crystals.Tij is a symmetric traceless 3×3 matrix which can be transformed to the diagonal
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form where the eigenvaluesT1, T2 andT3 can be related to the vacuum expectation values
v1 andv5 by the relations

T1 = 1√
2
v1+ 1√

6
v5

T2 = −1√
2
v1+ 1√

6
v5

T3 = −2√
6
v5.

(19)

Now the potential (18) reads

V (v1, v5) = α + β(v2
1 + v2

5)+ 1√
6
γ v5(3v

2
1 − v2

5)+ δ(v2
1 + v2

5)
2. (20)

We note that for a symmetric 3×3 real matrix [TrT 3]2 6 1
6[Tr T 2]3 is satisfied. This results

in the relation 3v2
5 > v2

1 or 3v2
5 < v2

1.
The relations∂V /∂v1 = ∂V /∂v5 = 0 lead to the conditions
(i) γ = 0, v2

1 + v2
5 = −β/2γ

(ii) γ 6= 0, eitherv1 = 0, v5 6= 0 or 3v2
5 = v2

1 6= 0.
For the latter possiblities we should haveβ < 0, γ < 0 and δ > 0 to satisfy the local
minimality. They correspond to SO(3)→ D∞ breaking where one of the gauge bosons
remains massless. In terms of the eigenvalues of the matrixT , they represent the degenerate
caseT : (1, 1,−2)v5/

√
6 for v1 = 0. For v1 = ±

√
3v5 one still gets the degenerate

eigenvalues but in different orderings. In condensed matter physics this corresponds to a
phase transition from the isotropic liquid to uniaxial nematic liquid crystal.

One can work out the most general case wherev1 6= 0 andv5 6= 0 with 3v2
5 6= v2

1 and
show that the minimum of the potential is obtained only forγ = 0, β < 0 andδ > 0. For
simplicity one can study the casev5 = 0 andv2

1 = −β/2δ and show that the minimum of
the potential is achieved forβ < 0 andδ > 0. This choice breaks SO(3) toD2 whereT has
non-degenerate eigenvaluesT : (1,−1, 0)2v5/

√
6. The alternative choicesv5 = ±

√
3v1

are required by the minimality of the potential which corresponds to reshuffling of the
non-degenerate eigenvalues as(1, 0,−1) or (0, 1,−1).

This breaking, in condensed matter physics, represents a phase transition from the
isotropic liquid to a biaxial nematic liquid crystal. If we choosev1 = 0 andv2

5 = −β/2δ
then we obtain SO(3)→ D∞ breaking providedβ < 0 andδ > 0.

(b) The little groups of the irreducible representationj = 3
By certain non-zero components of the vacuum expectation values for〈φ〉 one can break
SO(3) toC∞, D3 and the tetrahedral groupT . To achieve this, letA = exp iwJ3 be the
generator ofC∞. To generateD∞ and thereof its subgroupD3 we takeB = expπ iJ1 as
usual. The real basis of fields are defined by

χ1 = 1√
2
(φ(33)− φ(3− 3)) χ5 = 1√

2
(φ(31)− φ(3− 1))

χ2 = 1√
2

i(φ(33)+ φ(3− 3)) χ6 = 1√
2

i(φ(31)+ φ(3− 1))

χ3 = 1√
2
(φ(32)+ φ(3− 2)) χ7 = φ(30)

χ4 = 1√
2

i(φ(32)− φ(3− 2)).

(21)

In theχ -basis the generators ofD∞ are in the block diagonal forms:

A′(w) =


a(3w)

a(2w)
a(w)

1

 B ′ =


σ3

−σ3

σ3

−1

 . (22)
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A glance at the matricesA′(w) andB ′ shows thatD∞ is not a little group ofj = 3 for
D∞ does not possess a trivial representation whereas its subgroupC∞ has one. Therefore,
the non-zero vacuum expectation value〈φ(30)〉 = v7 breaks SO(3) toC∞.

Letting w = π we note that the fieldχ4 transforms as a trivial representation ofD2.
Nevertheless, this is not a little group ofj = 3 because, as we will see in the case of
tetrahedral groupT , the fieldχ4 serves as the only trivial representation ofT whereD2

is a subgroup. Due to a lemma of [1] the breaking occurs only for the maximal group
preserving the same trivial representation.

To obtain the generators ofD3 we let w = 2π/3 in A′(w) of (18). ThenA′(2π/3)
takes the form

A′
(

2π

3

)
=


I

R

R2

1

 R = 1

2

[−1 −√3√
3 −1

]
R3 = 1. (23)

Using A′(2π/3) and B ′ together we deduce that the fieldχ1 transforms as a trivial
representation. The other fieldsχ2 andχ7 remain to be the same non-trivial singlet, the pair
of fields (χ3, χ4) and (χ5, χ6) transform as the doublet ofD3. When 〈χ1〉 = v1 takes the
non-zero vacuum expectation value the gauge bosons gain the massesmW± =

√
3v1 and

mW3 = 3
√

2v1 which leads to the relationmW3 =
√

6mW± . After the symmetry breakdown
W± transform as a doublet whileW3 transform as a non-trivial representation of degree 1.

The groupD3 could have been generated byA(2π/3) andC = exp iπJ2. This would
be a different embedding ofD3 in SO(3) and would yield the fieldχ2 transform as a trivial
representation. This indicates that the fieldsχ1 andχ2 change their roles as we shift from
a rotation ofπ around thex1-axis tox2-axis. The generatorsA(2π/3), B andC together
generate a larger groupD6 which does not possess a trivial representation at all.

Now we discuss the breaking of SO(3) to the tetrahedral groupT = (332) with the
scalars ofj = 3. The tetrahedral group is isomorphic to the groupA4 of even permutations
of four letters. The generators of the tetrahedral group of order 12 can be taken to be

A = exp 2
3iπQ Q = 1√

3
(J1+ J2+ J3)

and

B = exp iπJ1. (24)

Instead ofB one can also takeD = exp iπJ3 which is already diagonal. The matrixA
is a 7× 7 unitary matrix in theφ(3m) basis and does not take block diagonal form if we
pass over to the real basis of (21). However, it is not difficult to transform the matrices
exp i(2π/3)Q and exp iπJi (i = 1, 2, 3) to the block diagonal forms where one can easily
read the representation contents of theχ or φ fields. For this purpose we introduce the
fields

η1 = χ3 η4 = χ7

η2 =
√

6
4 χ2−

√
10
4 χ6 η5 =

√
10
4 χ2+

√
6

4 χ6

η3 =
√

6
4 χ1+

√
10
4 χ5 η6 = −

√
10
4 χ1+

√
6

4 χ5

η7 = χ4.

(25)

In this new basis of the fields the matricesA andD take the block diagonal forms

A′ =
[
E

E

1

]
D′ =

[
F

F

1

]
(26)
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where

E =
[ 0 1 0

0 0 1
1 0 0

]
F =

[ 1 0 0
0 −1 0
0 0 −1

]
.

We note that the generation relation is trivial

A′3 = G′3 = D′2 = 1 (27)

whereG′ is defined through the relation

A′G′ = D′ G′ = A′2D′. (28)

The matrices exp iπJi (i = 1, 2, 3) generate the dihedral subgroupD2 of the tetrahedral
groupT . It is obvious from (22) that the fields (η1, η2, η3) and (η4, η5, η6) transform as the
triplet representation of the tetrahedral group. Whenη7 = χ4 takes the non-zero vacuum
expectation value〈χ4〉 = v4 = − i

√
2〈φ(32)〉 = i

√
2〈φ(3− 2)〉, SO(3) is broken to its

tetrahedral subgroup. The gauge bosons gain equal masses ofmW± = mW3 =
√

2v4. The
gauge bosons also transform as a triplet under the tetrahedral group so that either triplet of
the scalar fields or a mixture of them can be gauged away to give the gauge bosons the
longitudinal polarization.

We should also note the cyclic little groups ofj = 3 which areC3, C2 andC1. They
are respectively obtained when we assignw = 2π/3, 2π/2, and 2π in A′(w) of (18). The
fields χ1, χ2 andχ7 transform as the trivial representation ofC3. Similarly the fieldsχ3,
χ4 andχ7 transform as the trivial representation ofC2. For C1 all fields are in the trivial
representation.

4. Breaking with the scalars of j = 4

Here we discuss the breaking of SO(3) to all possible little groups of the irreducible
representationj = 4. They are the dihedral groupsD∞, Dn(n = 2, 3, 4), the cyclic
groupsC2, C1, and the octahedral group O.

(a) The dihedral groups
To discuss the dihedral groups we first write down the generators ofD∞ in theφ(4m),−46
m 6 4 basis:

A =



e4 iw

e3 iw

e2 iw

eiw

1
e−iw

e−2 iw

e−3 iw

e−4 iw


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B =



1
1

1
1

1
1

1
1

1


. (29)

When we pass over to the real basisχ = T φ with

χ1 = 1√
2
(φ(44)+ φ(4− 4)) χ5 = 1√

2
(φ(42)+ φ(4− 2))

χ2 = 1√
2

i(φ(44)− φ(4− 4)) χ6 = 1√
2

i(φ(42)− φ(4− 2))

χ3 = 1√
2
(φ(43)− φ(4− 3)) χ7 = 1√

2
(φ(41)− φ(4− 1))

χ4 = 1√
2

i(φ(43)+ φ(4− 3)) χ8 = 1√
2

i(φ(41)+ φ(4− 1))

χ9 = φ(40)

(30)

the matricesA andB read

A′(w) =


a(4w)

a(3w)
a(2w)

a(w)

1

 B ′ =


σ3

−σ3

σ3

−σ3

1


(31)

wherea(nw) andσ3 are defined in (14). We conclude from (31) that the nine-dimensional
irreducible representation of SO(3) branches as 9= 1+ [1] + [2] + [3] + [4] in terms of
the irreducible representations ofD∞. Whenφ(40) is assigned to the vacuum expectation
value 〈φ(40)〉 = v4, then SO(3) is broken toD∞, whereW± gain masses butW3 remain
massless.

The subgroupsD2, D3 andD4 of D∞ in the j = 4 representation can be obtained by
lettingw take respectively 2π/2, 2π/3 and 2π/4 in the generatorA′(w) of (31). If we set
w = π , A′(π) turns out to be a diagonal matrix with elements±1. It is obvious to see then
that the fieldsχ1, χ5 andχ9 transform as the trivial representation ofD2; when assigned
vacuum expectation values the SO(3) is broken toD2. In the case ofw = 2π/3 we obtain

A′
(

2π

3

)
=


R2

I

R

R2

1

 . (32)

The matricesA′(2π/3) and theB ′ in (31) generate the dihedral groupD3 from which we
read thatχ4 and χ9 transform as the trivial representation and break SO(3) toD3 when
assigned the non-zero vacuum expectation values. The representation properties of the
remaining fields are also obvious. As we have noted earlierA(2π/3) and exp iπJ2 would
also generate another dihedral groupD3 in SO(3). If this is the case then the scalarsχ3

and χ9 would turn out to be the trivial representation. It is not difficult to check that
exp i(2π/3)J3, exp iπJ1 and exp iπJ2 generate the larger groupD6 which is not a little
group of the irreducible representationj = 4.
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Lettingw = π/2 in A′(w) leads to the matrix

A′
(
π

2

)
=


I

−iσ2

−I
iσ2

1

 . (33)

The matricesB ′ of (31) andA′(π/2) of (33) generate the dihedral groupD4 of order 8. The
trivials ofD4 are the scalarsχ1 andχ9. The fieldsχ2, χ5 andχ6 transform as representations
of degree 1 while(χ3, χ4) and(χ7, χ8) transform as doublets. If we try to generateD4 with
A′(π/2) andC = exp iπJ2 we get the same group as before and no alternative breaking
occurs. The gauge bosonsW± transform as aD4 doublet whileW3 belongs to one of its
singlet. Furthermore, if we assume〈χ1〉 6= 0 but 〈χ9〉 = 0 one can also predict a mass
relationmW3 = 2

√
2mW± .

(b) The octahedral group O
The irreducible representationj = 4 is the minimal dimension by which one can break
SO(3) to the octahedral group O. From (5) we see that the octahedral group is generated by

A = exp i
π

2
J3 B = exp i

2π

3

1√
3
(J1+ J2+ J3) (34)

where Jis are the 9× 9 matrix representation of (1). These matrices cannot be put
simultaneously into the block diagonal forms in theχ basis in contrast to the cases of
dihedral groups. However, a further transformationη = Sχ with

η1 =
√

5
12χ1+

√
7

12χ9 η4 = χ2

η2 =
√

7
12χ1−

√
5

12χ9 η5 =
√

2
4 χ3−

√
14
4 χ7

η3 = χ5 η6 =
√

2
4 χ4+

√
14
4 χ8 η7 = χ6

η8 =
√

14
4 χ3+

√
2

4 χ7

η9 = −
√

14
4 χ4+

√
2

4 χ8

(35)

transform the matrices of (34) to the block diagonal forms.

A′ =


1

σ3

K

−K

 B ′ =


1

R2

E2

E2

 (36)

where

K =
[ 1 0 0

0 0 −1
0 1 0

]
andσ3, R andE are defined earlier. It is certain that the generation relationA′4 = B ′3 =
(A′B ′)2 = 1 is satisfied.

The octahedral group is isomorphic to the symmetric groupS4 which has two
representations of degree 1 (one is the trivial representation), one representation of degree 2
and two inequivalent representations of degree 3. The decomposition in (36) indicates that
the nine-dimensional irreducible representation of SO(3) branches as 9= 1+ 2+ 3+ 3′

in terms of the irreducible representation ofS4. Thus the field ofη1 transform as a trivial
representation while(η2, η3) as a doublet,(η4, η5, η6), and(η7, η8, η9) as two inequivalent
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triplet representations. We wish to emphasize that the fields(η4, η5, η6) transform just like
the gauge fields(W1,W2,W3) do underS4. This indicates that in the symmetry breakdown
SO(3) −→ S4 the fields(η4, η5, η6) are gauged away to yield the longitudinal components
of W bosons. The gauge bosons gain the equal massesmW =

√
20/3v1 through the vacuum

expectation values.

〈φ(44)〉 = 〈φ(4− 4)〉 =
√

5
24〈η1〉 =

√
5
24v1

〈φ(40)〉 =
√

7
12〈η1〉 =

√
7
12v1.

(37)

It is also obvious from (31) that forw = π theA′(π) generate the cyclic groupC2 whose
trivial representation corresponds to the fieldsχ1, χ2, χ5, χ6 andχ9. Therefore,C2 is also
a little group as well asC1 which corresponds to the unit matrix.

5. Breaking by the scalars inj = 6

This is the minimal dimension where one can break SO(3) to the icosahedral groupY which
is isomorphic to the group of even permutationsA5 of five letters. Among the possible
little groups areD∞, Y , O, T , Dn(n = 6, 5, 4, 3, 2) andCm(m = 3, 2, 1). We will not
consider the little groupsO and T in detail in this section as they have been treated in
earlier sections. Again we start by writing the generators ofD∞ and discussing all the little
groupsDn andCm types as the subgroups ofD∞. The case of the icosahedral group will
require some detailed considerations.

(a) The dihedral groups
In the φ(6m), −6 6 m 6 6, basis we take as generators theA(w) = exp iwJ3 which is
the 13× 13 diagonal matrix andB = exp iπJ1 which is the usual off-diagonal matrix with
entries 1. Similar to the previous cases we define the real scalars by

χ1 = 1√
2
(φ(66)+ φ(6− 6)) χ7 = 1√

2
(φ(63)− φ(6− 3))

χ2 = 1√
2

i(φ(66)− φ(6− 6)) χ8 = 1√
2

i(φ(63)+ φ(6− 3))

χ3 = 1√
2
(φ(65)− φ(6− 5)) χ9 = 1√

2
(φ(62)+ φ(6− 2))

χ4 = 1√
2

i(φ(65)+ φ(6− 5)) χ10 = 1√
2

i(φ(62)− φ(6− 2))

χ5 = 1√
2
(φ(64)+ φ(6− 4)) χ11

1√
2
(φ(61)− φ(6− 1))

χ6 = 1√
2

i(φ(64)− φ(6− 4)) χ12 = 1√
2

i(φ(61)+ φ(6− 1))

χ13 = φ(60).

(38)

In the real basis ofχ the generators ofD∞ would read

A′(w) =



a(6w)
a(5w)

a(4w)
a(3w)

a(2w)
a(w)

1


(39a)
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B ′ =



σ3

−σ3

σ3

−σ3

σ3

−σ3

1


. (39b)

The vacuum expectation values〈φ(60)〉 = v13 breaks the symmetry toD∞. The fields
transforming as the trivial representation ofD2 areχ1, χ5, χ9 andχ13. Thus by the vacuum
expectation values〈φ(66)〉 = 〈φ(6 − 6)〉 = v1/

√
2, 〈φ(64)〉 = 〈φ(6 − 4)〉 = v5/

√
2,

〈φ(62)〉 = 〈φ(6 − 2)〉 = v9/
√

2, and 〈φ(60)〉 = v13 the SO(3) is broken to its finite
subgroupD2. With w = 2π/3 in A′(w) of (39) we obtainχ1, χ8 andχ13 transforming as
the trivial representation ofD3. Thus with the expectation values〈χ1〉 = v1, 〈χ8〉 = v8, and
〈χ13〉 = v13, SO(3) breaks down toD3. Another embedding ofD3 in SO(3) is possible if we
replaceB by C = exp iπJ2 in which case the trivials areχ1, χ7 andχ13. The generators
A(2π/3), B, C together generate the dihedral groupD6 whereχ1 and χ13 serve as the
trivial representation ofD6 so that〈χ1〉 = v1 and〈χ13〉 = v13 will break SO(3) toD6. The
dihedral groupD4 will be generated byB ′ andA′(π/2) in which caseχ5 andχ13 are the
trivial representations. The transformation properties of the other fields are also transparent.
The generatorsA andC also generate the same dihedral groupD4.

Now, if we letw = 2π/5 inA′(w) of (35) we observe that the scalarsχ4 andχ13 are the
trivial representation ofD5 generated byA(2π/5) andB. If we generateD5 by A(2π/5)
and C = exp iπJ2 then the scalarsχ3 and χ13 transform as the trivial representation.
Therefore, SO(3) can be broken toD5 in two different ways. The matricesA(2π/5), B and
C generate the dihedral groupD10 whose only trivial scalar is also the trivial scalarχ13 of
D∞. Therefore,D10 is not a little group for the largest group of this seriesD∞ possesses
the same trivial representationχ13.

One could have generatedD6 by A(2π/6) andB which also involvesC as one of the
element and the trivials are the same scalarsχ1 andχ13 which was discussed above.

The cyclic little groups are thoseCn(n = 1, 2, 3) for j = 6 whereC3, C2 andC1 have
respectively five, seven and 13 trivial representations whose field contents can be identified
from (38) and (39).

(b) The icosahedral group
We note from (5) that the 60 elements of the icosahedral group can be generated by
A = exp i(2π/5)Q, C = iπJ3 whereQ = (σJ1+ J3)/(

√
2+ σ) andJi ’s are the 13× 13

generators of the SO(3) Lie algebra, obtained from (1) forj = 6. The matrixC is a diagonal
matrix with±1 entries whereasA is a complicated unitary matrix with entries of irrational
numbers. The choice of the basis (38) transform these matrices to orthogonal matrices
though not in the desired block diagonal form. It can be checked that the 13-dimensional
irreducible representation of SO(3) can be decomposed as

13= 1+ 3+ 4+ 5 (40)

in terms of the irreducible representations of the icosahedral groupY . It is not, in principle,
difficult to bring simultaneously the matricesA andC into block diagonal form but this
needs a lot more computer calculations. A choice of the new basisη = Sχ transformsA
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andC into block diagonal forms

A′ =


1

L

M

N



C ′ =



1
−1

−1
1

1
−1

1
−1

1
1

1
−1

−1



(41)

whereL, M, N are 3× 3, 4× 4 and 5× 5 orthogonal matrices, respectively. They are
given in the appendix together with the representation contents of theη fields. Since the
generatorsA′ andC ′ satisfy the generation relationA′5 = B ′3 = C ′2, with C ′ = A′B ′ one
can compute the generatorB ′ from the relationB ′ = A′T C ′. One can easily show that
B ′3 = 1.

From the appendix we note that the field

η1 = 1

32
√

6
[6
√

35χ1− 2
√

462χ5− 6
√

77χ9+ 2
√

66χ13] (42)

transforms as a trivial representation of the icosahedral group. The fields(η2, η3, η4)

transform as a triplet ofY much as the(W1,W2,W3) do. The other fields

(η5, η6, η7, η8) and (η9, η10, η11, η12, η13)

transform respectively as four-and five-dimensional irreducible representations ofY . When
the fields (η2, η3, η4) are gauged away by an SO(3) transformation giving the non-zero
vacuum expectation value toη1, 〈η1〉 = v1, the symmetry is broken to the icosahedral
group. The original fields which gain the expectation values proportional to〈η1〉 = v1 are
found to be

〈φ(66)〉 = 〈φ(6− 6)〉 =
√

3·5·7
32 v1

〈φ(64)〉 = 〈φ(6− 4)〉 = −
√

2·7·11
32 v1

〈φ(62)〉 = 〈φ(6− 2)〉 = −
√

3·7·11
32 v1

〈φ(60)〉 =
√

11
16 v1.

(43)

The other fields take zero expectation values. All the gauge bosons gain equal masses given
by mW =

√
14v1.

Before concluding this section we would like to note the little groupsT andO of
j = 6. With respect to the irreducible representations ofT the 13-dimensional irreducible
representation of SO(3) can be decomposed as

13= 2(1)+ 1′ + 1′′ + 3(3) (44)
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which indicates thatT possesses two trivial representations inj = 6. SinceT is a subgroup
of Y one of its trivial representation is characterized by the fieldη1. The second trivial
scalar field is some linear combination of theχ fields which we did not attempt to identify.
Similarly thej = 6 representation can be decomposed as

13= 1+ 1′ + 2+ 2(3)+ 3′ (45)

in terms of the irreducible representations of the octahedral groupO. For the octahedral
groups not a subgroup ofY the trivial representation in (45) is not the fieldη1 and should be
computed. This needs some further work. Nevertheless, under the light of these discussions,
it is clear that the octahedral group is a little group of thej = 6 representation. The gauge
bosons transform as the representation 3so that the scalar fields belonging to the irreducible
representation 3can be gauged away and the gauge bosons gain equal masses.

6. Discussions

Using the matrix representations of the irreducible representationsj = 2, 3, 4, 6 of SO(3)
in the canonical basis we have obtained the matrix representations of the corresponding
little groups. They are transformed into the block-diagonal forms so that the representation
contents of the Higgs scalars turned out to be manifest. Assigning the vacuum expectation
values to the Higgs scalars of the trivial representations of the related little groups, the
SO(3) symmetry is broken to its closed subgroups. Three gauge bosons of SO(3) gain
masses except in the case of the groupsC∞, Cn andD∞, whereW3 remain massless.

What we have not discussed in the text is the problem of pseudo-Goldstone bosons
emerging in these breakings; some general remarks can be made. The number of pseudo-
Goldstone bosons can be predicted in each individual case for which the numbers of Higgs
fields in the trivial representations and the massive gauge bosons are known. For example,
when SO(3)→ D2 occurs as a spontaneous breaking with the Higgs fields in thej = 2
representation no pseudo-Goldstone bosons arises since we have two Higgs scalars in
the trivial representations and the remaining Higgs fields are gauged away to yield the
longitudinal degrees of freedom to theW bosons. For the other little groups this is not
the case and the number of pseudo-Goldstone bosons equals 2(j − 1) minus the number of
trivial representations of the little groups for all cases except for the fact that it is(2j − 1)
minus the number of trivial representations for the groupsC∞, Cn andD∞.

If SO(3) is embedded in a larger local symmetry and this larger symmetry is broken
to the closed subgroups of SO(3), it is then possible that these pseudo-Goldstone bosons
could be absorbed by the additional gauge bosons of the larger symmetry. If any closed
subgroup of SO(3) is going to be a residual symmetry in some kind of GUT breaking, SO(3)
symmetry has to be a component of the larger symmetry to avoid the pseudo-Goldstone
bosons. The spontaneous breaking of GUT, with or without horizontal symmetry, to a
theory with a residual finite subgroup of SO(3) induces the cosmic strings which can be
characterized by the conjugacy classes of the finite subgroups of SU(2). Although there
are a number of interesting works in the literature [6], this program requires more detailed
analysis and is deferred for a further study.

Analogous structures, in the case of liquid crystals, have been suggested where the line
defects are associated with the conjugacy classes of the binary polyhedral groups [3, 4].
Similar structures are expected in the phase transitions of the early universe where a GUT
breaking may involve a closed subgroup of SO(3). In the light of the foregoing discussions
our work constitutes a mathematical framework to implement such studies both in the field
of liquid crystals and/or in cosmic strings.
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A connection between the present work and the ADE series of the affine Lie algebras
can be made where the McKay correspondence may play a fundamental role. A partial
success has already been achieved [10] but definitely needs further investigations. It is also
desirable to study the correspondence between the present method of symmetry breaking
of SO(3) and the one made by tensor fields, which seems to be more appropriate in the
liquid crystal phenomena. A detailed study of the symmetry breaking patterns for the
j > 3 representation including the relations between theφ(jm) fields and the higher rank
symmetric tensor fieldsTabc··· will be discussed elsewhere [14].
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Appendix

The matrices used in (41) are as follows:

L = 1

2

[−τ σ 1
−σ 1 τ

−1 τ σ

]
τ = 1

2(1+
√

5)
σ = 1

2(1−
√

5)
(46)

M = 1

2


−1/3

√
3
√

5/3 −1/
√

3
−1/
√

3 −1
√

5/3 −1
−2
√

5/3 0 1/3
√

5/3
−2/
√

3 0 −√5/3 −1

 (47)

N = 1

8


1 3−√5 −√5 3+√5 −2

√
5

−3+√5 −4 −√3(1+√5) 0 4
−√15

√
3(1+√5) −1

√
3(−1+√5) 2

√
3

3+√5 0
√

3(−1+√5) 4 4
2
√

5 4 −2
√

3 −4 0

 . (48)

The irreducible representations 1, 3, 4, 5 of the icosahedral group and theη fields are

1: η1 = 1
32
√

6
[6
√

35χ1− 2
√

462χ5− 6
√

77χ9+ 2
√

66χ13] (49)

3:


η2 = 1

32
√

6
[2
√

3(83− 33
√

5)χ3+ 6
√

11(7+ 3
√

5)χ7+ 6
√

22(3−
√

5)χ11]

η3 = 1
32
√

6
[−2

√
3(83+ 33

√
5)χ4− 6

√
11(7− 3

√
5)χ8+ 6

√
22(3+

√
5)χ12]

η4 = 1
32
√

6
[−18
√

10χ2+ 8
√

33χ6+ 6
√

22χ10]

(50)
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4=



η5 = 1
32
√

6
[−5
√

22χ1− 2
√

110χ2− 14
√

15χ5− 8
√

3χ6+ 11
√

10χ9

−
√

2χ10+ 2
√

105χ13]

η6 = 1
32
√

6
[6
√

11(3−
√

5)χ3− 6
√

11(3+
√

5)χ4− 2
√

3(23+ 3
√

5)χ7

+ 2
√

3(23− 3
√

5)χ8+ 2
√

3(3+ 5
√

5)χ11+ 2
√

3(3− 5
√

5)χ12]

η7 = 1
32
√

6
[−
√

110χ1+ 10
√

22χ2− 14
√

3χ5+ 8
√

15χ6+ 11
√

2χ9

+ 14
√

10χ10+ 2
√

21χ13]

η8 = 1
32
√

6
[−6

√
11(3−

√
5)χ3− 6

√
11(3+

√
5)χ4+ 2

√
3(23+ 3

√
5)χ7

+ 2
√

3(23− 3
√

5)χ8− 2
√

3(3+ 5
√

5)χ11− 2
√

6(67− 15
√

5)χ12]

(51)

5=



η9 = 1
32
√

6
[−
√

33(47− 21
√

5)χ1+ 3
√

2(27+ 7
√

5)χ5

−
√

15(47− 21
√

5)χ9+ 3
√

14(27+ 7
√

5)χ13]

η10 = 1
32
√

6
[−2
√

66χ2− 24
√

5χ6+ 10
√

30χ10]

η11 = 1
32
√

6
[−3

√
11(27+ 7

√
5)χ1−

√
6(47− 21

√
5)χ5

− 3
√

5(27+ 7
√

5)χ9−
√

42(47− 21
√

5)χ13]

η12 = 1
32
√

6
[−6

√
11(7+ 3

√
5)χ3+ 2

√
15(47− 21

√
5)χ7

+ 2
√

6(23+ 3
√

5)χ11]

η13 = 1
32
√

6
[6
√

11(7− 3
√

5)χ4+ 2
√

15(47+ 21
√

5)χ8

+ 2
√

6(23− 3
√

5)χ12].

(52)
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