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Abstract. A gauged SO(3) symmetry is broken into its closed subgroups by Higgs scalars
belonging to the irreducible representations characterizedg by 2, 3, 4 and 6. Explicit

matrix decompositions of the irreducible representations of SO(3) in terms of the irreducible
representations of the closed subgroups are made manifest. Analogous structures between the
line defects of liquid crystals and the cosmic strings are notified.

1. Introduction

The closed subgroups of SO(3) are well known to physicists through their applications in
crystallography and molecular physics. They are the cyclic graiypslihedral groupsD,,,
tetrahedral groud’, octahedral grou, and the icosahedral grodp There are also two
infinite closed subgroup€., ~ SO(2) generated by an arbitrary rotation around an axis
and Do, which is generated b¢',, and a rotationr around an axis orthogonal to the axis

of rotation of C..

Louis Michel, in his remarkable paper [1], has given the list of the little groups of the
irreducible representations = 0-6. The little groups ofi = 0 andj = 1 are obviously
SO(3) and SO(2), respectively. The others are non-trivial and will be the topic of this paper.
It seems that many of these little groups manifest themselves in the phase transitions of
liquid crystals [2]. IfH is one of the closed subgroups of interest then the conjugacy classes
of the homotopy groups; of the coset space SO(3Y classify the line defects of the liquid
crystals [3]. The homotopy groups satisfy the relatiSO(3)/H) ~ 71(SU(2)/H') ~ H'
if H' is the disconnected double cover Bf The H’ is called the binary polyhedral group
and they constitute the finite subgroups of SU(2). Therefore the class multiplications of the
conjugacy classes of the binary polyhedral groups will be of great importance when two
line defects of liquid crystals coalesce [4].

Analogous structures are expected as cosmic strings when SO(3) is taken as a local gauge
symmetry [5]. These cosmic strings may arise from the GUT breaking [6] where SO(3)
may be embedded as a component of the family symmetry of leptons and quarks. There
has been a considerable interest in the finite subgroups of SO(3) or SU(2) to accommodate
the family structure of leptons and quarks [7].

Finite subgroups of SU(2) have also been a focus of interest from the mathematical point
of view. It is known as the McKay correspondence [8] which associates the columns of the
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character tables of the binary polyhedral groups with the eigenvectors of the incidence
matrices (2I-Cartan matrix) of the affine Lie aIgebrAg, DnE(Ee, E7, E8) Here the
correspondence is respectively cyclic groups, dicyclic groups (double covers of the dihedral
groups), binary tetrahedral group, binary octahedral group and the binary icosahedral group.
Incidence matrices of these affine algebras also play crucial roles in the decomposition of
the irreducible representations of SU(2) into the irreducible representations of its finite
subgroups [9]. These features of the finite subgroups of SU(2) and the combinations of
line defects of liquid crystals as well as the cosmic strings will be the subject of a separate
publication [10].

Classification of the little groups of the irreducible representations of compact Lie groups
remains an unsolved problem although a great deal of investigation has been made along
this line [11]. Even for SO(3) further work is needed to clarify some of the confusion in the
literature. In what follows we obtain, in the canonical basis, explicit matrix decompositions
of the SO(3) irrepsj = 2, 3, 4, 6 in terms of the irreps of the closed subgroups of
interest. We identify the representation contents of the scalar fields. Assigning the vacuum
expectation values to the fields transforming as trivial representations of the closed subgroups
we obtain the masses of the gauge bosons of SO(3).

A similar work could have been done by taking the symmetric tensor fields of ranks
2, 3, 4 and 6 with suitable trace conditions [12]. Indeed, this type of approach has been
partly discussed in the phase transitions of liquid crystals [13]. In a different paper the
connections between these two approaches will be discussed [14].

The paper is organized as follows. In section 2 we discuss the generation relations of
the generators of the finite subgroups of SO(3) and SU(2) displaying examples from the
two-dimensional irreducible representations of SU(2). In section 3 we discuss the symmetry
breaking with the scalars in the irreducible representatipns 2 and j = 3. Section 4
is devoted to the discussion of the problem foe= 4. Section 5 contains the study of
the j = 6 case where we obtain the dihedral groupgn = 6, 5, 4, 3, 2) as well as the
icosahedral groufy as little groups. Finally, we discuss the implications of our approach
in physics in the concluding remarks. Matrices generating the irreducible representations 3
4, 5 of the icosahedral group and the scalar fields of these representations are given in the
appendix.

2. Generators and the generation relations of the finite subgroups of SO(3) and SU(2)

The irreducible representations of SO(3) are all real; up to an equivalence, there is only one
such representation for each odd dimensign+21, where j is the angular momentum.

An arbitrary group element of SU(2) can be written &% where J are the usual

(2j +1) x (2j + 1) matrix representations

Jep(jm) = /(j Fm)(j £m + D (jm £ 1)

: : 1)
Jap(jm) = mep(jm)

where ¢ (jm) are the basic vectors of tf(@j + 1)-dimensional irreducible representation
of SU(2) when; takes the values (% 1,3 5. ---; integer values are for the SO(3) cases. In
our calculationgp (jm) will stand for the scalar fields associated with the related irreducible
representations.

The finite subgroups of SU(2) can be generated by discrete rotations around the properly
chosen two axes. Let and B denote such rotations. Then the generation relations of the
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finite subgroups of SU(2) and SO(3) are given by
AP =Bl =C"=2Z7 (2)

whereC = AB, 7Z? =1 for SU(2) andZ = 1 for SO(3). We will also use occasionally

the notation of [15] for the designation of these groups; the polyhedral subgroups of SO(3)
are denoted bypgr) and the notatiofpgr) will stand for the binary polyhedral subgroups

of SU(2). Here(pgr) takes the valuesi1) for the cyclic groups,n22) for the dihedral
groups, while (332), (432) and (532) stand for the tetrahedral, octahedral and icosahedral
subgroups of SO(3), respectively. Hetieis an integern > 1. Their double covers

are the binary polyhedral grouggqgr). There are also two infinite subgroups of SO(3),

Cs ~ SQO(2) generated by an arbitrary rotation around an axis, say the third &s,and

the infinite dihedral group whose generators, in this paper, will be taken t Hed?/s

and B = €7/1. The generation relation

BAB™1=4A"1 B?>=1 (3)

can be used for all dihedral groups includify,.
In general, a rotation by an anglearound an arbitrary axi¢) = n;J;, where|n| = 1,
can be written as'®?. For example, the generators

A = g@1/ms B —dmh 4)
generate the dihedral group,, (n22), of order 2, if j is an integer, otherwise they generate
the dicyclic group(n22) of order 4.

Below we list the generators and the generation relations of the polyhedral subgroups
of SO(3):

Finite subgroups

of SO(3) Generators Generation relations
C,:(nnl) A =expiZJ; A" =1
D,:(n22) A=exp?" J3, B =expirJy A"=B2=C?%=1
T:(332) A= exp%”%(h +Jo+J3) A3=B3=(AB)2=1 B = A’C

C=expirJy
0 : (432) A = exp'Z J; A*=B3=(AB)?=1

B =exp% L(Ji+J2+ Jy)
Y:(532) A=expZ ”Jg%’f AS=B3=C?2=1
B=expZ (—olp+ 13
T = %(1 +/5)
o =3(1—+/5) (5)

Let us further illustrate this point giving an example from the familiar two-dimensional
representation of SU(2). The Lie algebra of SU(2) is represented; by o;/2 where
o;(i = 1, 2, 3) are the usual Pauli matrices. Consider the rotations

A=di0 C=¢dmin (6)
where Q = -1 (01 + 02 + 03) with 0% = J.
They are given by the matrices

A= %(l—i— io1 + 0o +i03) C=io ©)
whereA® = -1, C?2 = -1, B = A{C = }(1+ 01+ i0p —i03), B3 = —1.
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Therefore the three generators, B, C, satisfy the generation relations® = B3 =
(AB)? = —1 as stated in (2) and generate the binary tetrahedral g/@8@ of order 24.
The elements of the group are given by the 2 unitary matrices.

+1, ioy, Hiop, Hios, 3(£1+i0y iop +io). (8)
A 3 x 3 matrix representation of the tetrahedral group of order 12 is either obtained by

substituting the 3« 3 matrix representations of in (5) or taking the inner automorphism
of the binary tetrahedral group in (8).

3. Symmetry breaking with the Higgs scalars in the representationg = 2 andj = 3

The standard Lagrangian of a local gauge theory without fermions is given by
L=—3FuF" —3(D.$) (Du$) = V(9) ©
where the field strengthg),, and the covariant derivativ®,, are given by
Fo=0W,—0oW,+gW, xW,
D,=09,—igW,, W, =J -W,
with J being the(2j + 1) x (2j + 1) matrix representation obtained by the expression (1).
A general Higgs potential restricted by renormalization can be written as

V(X) = &+ BXaXa + VSabe XaXbXe F 88abed Xa XbXe Xd (11)
wherey,(a =1,2,...,2j + 1) are real scalar fields which can be defined in terms of the
complex scalar fieldg (jm). The tensorsf,,. and g.,.« should be chosen appropriately
for each irreducible representation of degrget2l. The minimum of the Higgs potential
of (11) can be obtained by assigning the vacuum expectation values to the Higgs scalars
{xa) = v,- The details of the symmetry breaking patterns are very important which we will
discuss for the irreducible representatipn= 2. The main objective of this paper is then
to identify the non-zero expectation values associated with the appropriate little groups of
SO(3). We start with the representationsfofiven in (1) wherep*(jm) = (—1)" ¢ (j —m)

(the same relation satisfied by the spherical harmonics) and transform it to a real basis of
field which we denoted by .

(10)

(@) j = 2case
This irreducible representation has two little groups, and D,. In the ¢(2m) basis
—2 < m < 2 the generators ab, read
— eZiw
éw
A=expwlz = 1
e—iw
e—2iw

B =expinJ; = 1 : (12)

L 1
Choosing the real fielgg = T¢ as

= 502 +62-2)  xz3= ;@2H-¢2-1)
X2=%2i(¢(22)_¢(2_2)) Xa = %i(¢(21)+¢(2—1)) (13)
x5 = ¢(20)
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and transforming the generatatsand B to the basis of the fields one gets

a(w) ' 03
A(w) =TAT' = [ a(w) } B =TAT' = { —o3 ] (14)
1 1
where
cosnw  Sinnw
a(nw) = [— sinnw COSnw] n=012...

and

(1 0
=\o -1

is the third Pauli matrix.

It is clear from (14) thatd’(w) and B’ are in the block diagonal forms where each
block represents an irreducible representatiorDgf. The groupD., has two irreducible
representations of degree 1 (one is the trivial representation) and an infinite number of two-
dimensional irreducible representations characterized#y16]. From A’(w) and B’ we
conclude thatp (20) transforms as a trivial representation while the field&@), ¢ (2 — 2))
and ¢ (21), ¢(2— 1)) transform as doublets of [2] and [1], respectively. By assigning the
vacuum expectation values &, (xs) = (¢(20)) = vs the SO(3) symmetry is broken to
Do, where(Wy, W,) or W* gain equal masses whil#; remains massless. The massive
gauge boson® * transform as a doublet of [1] db., generated by the matricegw) and
—o3 while W3 belongs to the non-trivial representation of degree 1.

If we letw =7, A'(w) takes the form

A’(n)=|:1 1 1] ’:<c1> 2) (15)

Now A’(w) and B’ generate the reducible representation of degree ®Hof One can
immediately note that the fieldg; and xs transform as the trivial representation of
D,. Assigning the vacuum expectation values to the figlds = v1 = v2(¢(22) =
V2(¢(2 - 2)) and (¢ (20)) = vs one can break the SO(3) symmetry to the subgrbymf
D... The gauge boson®#;, W, and W3 gain the masses

m? = g?(v1 + v/3vs)? m3 = g?(v1 — v/3vs)? m§ = 4g%vi  (16)
and each transform as one of the non-trivial representations of degre®4. of
Now we would like to discuss the symmetry breaking patterns using the general potential
V(x) given by (11). In almost all papers in the literature [17] the breaking SO(3).to
or D, is made by the use of a second rank symmetric traceless té&pser7;;, T;; = 0.

It is trivial to make one-to-one correspondence between the figlds=1, ..., 5) and
the components of the tens@y;[14]:

Ty = %2)(1—#%)(5 T2 = %XH—%Xs I3z = %Xs a7
Ty = %ZXZ Tz = %2)(3 Iz = %2)(4'

The potential of (11) in terms of the fieli; would read
V(T)=a+BTrT? +y TrT3 + 8[Tr T2 (18)

Symmetry-breaking patterns of this potential have been discussed in condensed matter
physics associated with the phase transitions of the uniaxial and biaxial nematic liquid
crystals. 7;; is a symmetric traceless>33 matrix which can be transformed to the diagonal
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form where the eigenvalueg, 7> and 75 can be related to the vacuum expectation values
v; andus by the relations

ﬁvl +
T2 = 721)1 + %U5 (19)
T3 «/?SUS

Now the potential (18) reads
V(v1,vs) = o + BF + v5) + ey us(3vf — v8) +8(f + vd)%. (20)

We note that for a symmetricx3 real matrix [Tr73]2 < ¢[Tr 72]2 is satisfied. This results
in the relation 32 > v? or 3vZ < v?.

The relationsiV /dv, = a9V /dvs = O lead to the conditions

() v =0.v + v =—B/2y

(i) ¥ # 0, eithervy = 0, vs # 0 or 2 = vZ # 0.

For the latter possiblities we should hage< 0,y < 0 andé > O to satisfy the local
minimality. They correspond to SO D, breaking where one of the gauge bosons
remains massless. In terms of the eigenvalues of the niatiixey represent the degenerate
caseT: (1,1, —2)vs/+/6 for v = 0. Foruv; = ++/3vs one still gets the degenerate
eigenvalues but in different orderings. In condensed matter physics this corresponds to a
phase transition from the isotropic liquid to uniaxial nematic liquid crystal.

One can work out the most general case where: 0 andus # 0 with 3v2 # v2 and
show that the minimum of the potential is obtained only fo= 0, 8 < 0 ands > 0. For
simplicity one can study the casg = 0 andv? = —B/25 and show that the minimum of
the potential is achieved fg < 0 ands > 0. This choice breaks SO(3) @, whereT has
non-degenerate eigenvalu@s: (1, —1, 0)2vs/+/6. The alternative choicess = ++/3v;
are required by the minimality of the potential which corresponds to reshuffling of the
non-degenerate eigenvalues(as0, —1) or (0, 1, —1).

This breaking, in condensed matter physics, represents a phase transition from the
isotropic liquid to a biaxial nematic liquid crystal. If we choosg= 0 andvZ = —B/25
then we obtain SO(3) D, breaking provided3 < 0 and§ > 0.

(b) The little groups of the irreducible representatign= 3

By certain non-zero components of the vacuum expectation valuegfaone can break
SO(3) toCy, D3 and the tetrahedral group. To achieve this, led = exp iwJ3 be the

generator ofC.,. To generateD,, and thereof its subgroup; we take B = expriJ; as

usual. The real basis of fields are defined by

= 50B3-¢B-3)  x= 5@BY-¢B-1)
= 5i@BY+9(B-3)  xe= L@@ +¢B-1)

x= ;0B +¢B-2)  x7=¢@30 @
xa= 7132 - p(3-2).
In the x-basis the generators @i, are in the block diagonal forms:
a(3w) o3
A (w) = a(2w) () B = I o (22)

1 -1
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A glance at the matriced’(w) and B’ shows thatD,, is not a little group ofj = 3 for
D4, does not possess a trivial representation whereas its subgrgupas one. Therefore,
the non-zero vacuum expectation valigeg30)) = v; breaks SO(3) ta .

Letting w = 7w we note that the field, transforms as a trivial representation B§.
Nevertheless, this is not a little group ¢f = 3 because, as we will see in the case of
tetrahedral grouf’, the field x4 serves as the only trivial representation ©fwhere D,
is a subgroup. Due to a lemma of [1] the breaking occurs only for the maximal group
preserving the same trivial representation.

To obtain the generators dp; we letw = 27 /3 in A’(w) of (18). ThenA’'(2x/3)
takes the form

1

1

Using A’(27/3) and B’ together we deduce that the fiejd transforms as a trivial
representation. The other fielgs and x7 remain to be the same non-trivial singlet, the pair
of fields (x3, x4) and (xs, xs) transform as the doublet dp;. When(x;) = v; takes the
non-zero vacuum expectation value the gauge bosons gain the magses +/3v; and
my, = 3v/2v; which leads to the relatiomy, = V6my=. After the symmetry breakdown
W= transform as a doublet whil#/; transform as a non-trivial representation of degree 1.

The groupD3 could have been generated By2r /3) and C = exp ir J,. This would
be a different embedding db; in SO(3) and would yield the fielg, transform as a trivial
representation. This indicates that the fiejdsand x, change their roles as we shift from
a rotation ofz around thex;-axis tox,-axis. The generatord (27 /3), B and C together
generate a larger groups which does not possess a trivial representation at all.

Now we discuss the breaking of SO(3) to the tetrahedral grbup (332 with the
scalars ofj = 3. The tetrahedral group is isomorphic to the groupof even permutations
of four letters. The generators of the tetrahedral group of order 12 can be taken to be

A =explinQ Q=%3(11+12+J3)
and
B =exp it Ji. (24)

Instead of B one can also také = exp iz J3 which is already diagonal. The matrix

is a 7x 7 unitary matrix in thep (3m) basis and does not take block diagonal form if we
pass over to the real basis of (21). However, it is not difficult to transform the matrices
exp i(2r/3)Q and exp it J; (i = 1, 2, 3) to the block diagonal forms where one can easily
read the representation contents of theor ¢ fields. For this purpose we introduce the
fields

N1 = X3 N4 = X7

772=§5X2—‘/TTOX6 775=JTTOX2+‘/76X6 (25)
773=?X1+‘/TTOX5 776=—@X1+4’Xs

n7 = Xa.

In this new basis of the fields the matricasand D take the block diagonal forms

E F
A/z[ E ] D/z[ F } 8
1 1
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where

010 1 0 O
E=[o 0 1} F=[o 1 o].
1 00 0O 0 -1

We note that the generation relation is trivial

AR=G*=D?=1 (27)
whereG’ is defined through the relation

AG =D G = A?D'. (28)

The matrices expriJ; (i = 1, 2, 3) generate the dihedral subgrodp of the tetrahedral
groupT. It is obvious from (22) that the fields{, 12, n3) and @4, ns, ng) transform as the
triplet representation of the tetrahedral group. When= x4 takes the non-zero vacuum
expectation valuexs) = va = —iv/2(¢(32)) = iIvV2(¢(8 — 2)), SO(3) is broken to its
tetrahedral subgroup. The gauge bosons gain equal masseg-0f my, = /2vs. The
gauge bosons also transform as a triplet under the tetrahedral group so that either triplet of
the scalar fields or a mixture of them can be gauged away to give the gauge bosons the
longitudinal polarization.

We should also note the cyclic little groups pt= 3 which areCs, C, and C;. They
are respectively obtained when we assige= 27 /3, 27 /2, and Z in A’(w) of (18). The
fields x1, x2 and x7 transform as the trivial representation @f. Similarly the fieldsys,
x4 and x7 transform as the trivial representation ©f. For C; all fields are in the trivial
representation.

4. Breaking with the scalars ofj = 4

Here we discuss the breaking of SO(3) to all possible little groups of the irreducible
representationj = 4. They are the dihedral groupd.,, D,(n = 2, 3,4), the cyclic
groupsCs,, C1, and the octahedral group O.

(a) The dihedral groups
To discuss the dihedral groups we first write down the generatais o the ¢ (4m), —4 <
m < 4 basis:

_e4iw —_
eBiw
eZiw
eiw

e—iw
672 iw
e73iw

e—4iw
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B = 1 ) (29)

When we pass over to the real bagis= T'¢ with
n=p@@h+¢A—-4)  xs= 5@ +¢(4-2)
xe= @48 —¢(4-4)  xe= ;@42 —¢4-2)

X3 = %2(05(43) —¢(4-23) X7 = %2@(41) —¢(4-1) (30)

xa= @AY +0(@4-3)  ys= Li@@ED +¢@-1)

X9 = ¢(40)
the matricesA and B read

a(4w) 03
a(3w) —03
A(w) = a(Cw) B = 03
a(w) —03
1 1
(31)

wherea(nw) andos are defined in (14). We conclude from (31) that the nine-dimensional
irreducible representation of SO(3) branches as @+ [1] + [2] + [3] + [4] in terms of
the irreducible representations Bf,. When¢ (40) is assigned to the vacuum expectation
value (¢(40)) = vy, then SO(3) is broken t®,,, where W* gain masses bui; remain
massless.

The subgroups,, D3 and D4 of Dy, in the j = 4 representation can be obtained by
letting w take respectively2/2, 27 /3 and 2r /4 in the generatoA’(w) of (31). If we set
w = 7, A'(;r) turns out to be a diagonal matrix with elemetts. It is obvious to see then
that the fieldsys, xs and xg transform as the trivial representation bf; when assigned
vacuum expectation values the SO(3) is brokemto In the case ofv = 27 /3 we obtain

RZ

2 I

A() - R . (32)

3 R2
1

The matricesA’(27/3) and theB’ in (31) generate the dihedral group; from which we

read thaty, and xg transform as the trivial representation and break SO(3pjowhen

assigned the non-zero vacuum expectation values. The representation properties of the

remaining fields are also obvious. As we have noted eadli@r/3) and exp i J, would

also generate another dihedral groDp in SO(3). If this is the case then the scalats

and xg would turn out to be the trivial representation. It is not difficult to check that

exp i(2r/3)J3, exp it J; and exp i J, generate the larger groupgs which is not a little

group of the irreducible representatign= 4.
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Lettingw = /2 in A’(w) leads to the matrix
I

A’(Z) - e —1 . (33)

iO’z
1

The matricesB’ of (31) andA’(;r/2) of (33) generate the dihedral grouil, of order 8. The
trivials of D4 are the scalarg; andxg. The fieldsy,, x5 and xg transform as representations
of degree 1 whilgx3, x4) and(x7, xs) transform as doublets. If we try to generdg with
A'(/2) and C = exp it J, we get the same group as before and no alternative breaking
occurs. The gauge bosomg* transform as aD4 doublet while W3 belongs to one of its
singlet. Furthermore, if we assumg;) # O but (x9) = 0 one can also predict a mass
relationny, = 2v/2my-=.

(b) The octahedral group O
The irreducible representatioh = 4 is the minimal dimension by which one can break
SO(3) to the octahedral group O. From (5) we see that the octahedral group is generated by

A=expil Bexpi® L (Lt T (34)
= p23 = exp 3 /3 1 2 3

where J;s are the 9x 9 matrix representation of (1). These matrices cannot be put
simultaneously into the block diagonal forms in thebasis in contrast to the cases of
dihedral groups. However, a further transformatipa: Sy with

N1 =4/ 1%)(1 +4/ 112)(9 N4 = X2

M2 =/ 15X1 — / X0 ns = Y2xa— Yy,

35
N3 = X5 7’/6=§2X4+@X8 N7 = Xe (35)
ng = */TﬂXe, + %2X7
ng = —@ X4+ %2 X8
transform the matrices of (34) to the block diagonal forms.
1 1
r_ 03 ;L R?
A = % B = g2 (36)
-K E?

where

10 0
K=|:O 0 —1}
01 0

andos, R and E are defined earlier. It is certain that the generation relatiin= B =
(A’B)? = 1 is satisfied.

The octahedral group is isomorphic to the symmetric grdaypwhich has two
representations of degree 1 (one is the trivial representation), one representation of degree 2
and two inequivalent representations of degree 3. The decomposition in (36) indicates that
the nine-dimensional irreducible representation of SO(3) branches=a4 9 2+ 3+ 3
in terms of the irreducible representation $f Thus the field ofy; transform as a trivial
representation whilén,, n3) as a doublet(ny, ns, n6), and (n7, ng, ng) as two inequivalent
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triplet representations. We wish to emphasize that the figlglss, ns) transform just like
the gauge fieldsW,, W, W3) do underS,. This indicates that in the symmetry breakdown
SQO3) —> S, the fields(ns, 15, n6) are gauged away to yield the longitudinal components
of W bosons. The gauge bosons gain the equal masges /20/3v; through the vacuum
expectation values.

(¢ (44) = (¢4 2) = /50 =/ Enn
(#(40) = \/ Ty n0) = |/ on.

It is also obvious from (31) that fow = = the A’(;r) generate the cyclic groug, whose
trivial representation corresponds to the fiejds x2, x5, x6 and xo. Therefore,C; is also
a little group as well ag’; which corresponds to the unit matrix.

(37)

5. Breaking by the scalars inj = 6

This is the minimal dimension where one can break SO(3) to the icosahedral gnebjch

is isomorphic to the group of even permutatioAs of five letters. Among the possible
little groups areD.., Y, O, T, D,(n = 6,5,4,3,2) andC,,(m = 3,2,1). We will not
consider the little group® and 7 in detail in this section as they have been treated in
earlier sections. Again we start by writing the generator®gf and discussing all the little
groupsD, andC,, types as the subgroups of,,. The case of the icosahedral group will
require some detailed considerations.

(a) The dihedral groups

In the ¢(6m), —6 < m < 6, basis we take as generators théw) = exp iwJ3 which is
the 13x 13 diagonal matrix and = exp iz J1 which is the usual off-diagonal matrix with
entries 1. Similar to the previous cases we define the real scalars by

1= 5 (@66 + ¢ (6 6) x1= 3¢ (63 —$(6-23)
X2= 7166 —p(6-6)  xs= i(#(63)+¢6-3)
X3 = 55(#(65 — ¢ (6-5) Xo = 75(¢(62) + ¢ (6—2))
Xa= 751 (65 + ¢ (6 —5)) x10= 7 1(¢(62 — ¢ (6-2) (38)
Xs = 75($(64 + (6 —4) X1 75(¢(6D) — $(6 - 1)
Xe= 51(@06H—¢6-4)  xi2= 5i(@®6)+¢6-1)
x13 = ¢(60).
In the real basis of the generators oD, would read

ra(bw) ]
a(bw)
a(4w)
A(w) = a(3w) (39)
a(2w)
a(w)
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o3
o

o3

B = —o3 . (3%)
o3

o

L 1]

The vacuum expectation valué# (60)) = v;3 breaks the symmetry t®,,. The fields
transforming as the trivial representation®$ are x1, xs, xo and x13. Thus by the vacuum
expectation values¢(66)) = (¢(6 — 6)) = v1/v2, (p(64) = (¢(6 — 4)) = vs5/+/2,
(9(62) = (p(6 — 2)) = vg/+/2, and (¢(60)) = vi3 the SO(3) is broken to its finite
subgroupD,. With w = 27 /3 in A’(w) of (39) we obtainyi, xg and x13 transforming as
the trivial representation ab;. Thus with the expectation valuég;) = v1, (xg) = vg, and
(x13) = v13, SO(3) breaks down t®3;. Another embedding ab3 in SO(3) is possible if we
replaceB by C = exp iz J, in which case the trivials arg;, x7 and x13. The generators
A(2n/3), B, C together generate the dihedral grollg where x1 and xi13 serve as the
trivial representation oDg so that(x;) = v1 and{x13) = viz will break SO(3) toDg. The
dihedral groupD,4 will be generated byB’ and A’(;r/2) in which caseys and xi13 are the
trivial representations. The transformation properties of the other fields are also transparent.
The generatorgl and C also generate the same dihedral grdup

Now, if we letw = 27 /5 in A’(w) of (35) we observe that the scalgrsand x13 are the
trivial representation oDs generated byA (27 /5) and B. If we generateDs by A (27 /5)
and C = exp it J, then the scalargs and x;3 transform as the trivial representation.
Therefore, SO(3) can be broken B in two different ways. The matrice4(27 /5), B and
C generate the dihedral group,o whose only trivial scalar is also the trivial scalgss of
D... Therefore,Dyq is not a little group for the largest group of this serieg, possesses
the same trivial representations.

One could have generatdds by A(27/6) and B which also involvesC as one of the
element and the trivials are the same scajarand x13 which was discussed above.

The cyclic little groups are thosg,(n = 1, 2, 3) for j = 6 whereC3, C, andC; have
respectively five, seven and 13 trivial representations whose field contents can be identified
from (38) and (39).

(b) The icosahedral group

We note from (5) that the 60 elements of the icosahedral group can be generated by
A=expi2r/50Q, C = irJzs whereQ = (6 J1 + J3)/(v/2+ o) and J;'s are the 13x 13
generators of the SO(3) Lie algebra, obtained from (1)ifer 6. The matrixC is a diagonal

matrix with &1 entries wheread is a complicated unitary matrix with entries of irrational
numbers. The choice of the basis (38) transform these matrices to orthogonal matrices
though not in the desired block diagonal form. It can be checked that the 13-dimensional
irreducible representation of SO(3) can be decomposed as

13=1+3+4+4+5 (40)

in terms of the irreducible representations of the icosahedral groupis not, in principle,
difficult to bring simultaneously the matrices and C into block diagonal form but this
needs a lot more computer calculations. A choice of the new lasisSy transformsA
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and C into block diagonal forms
!
A =

C/

Il
|

(41)

-1
L -1
whereL, M, N are 3x 3, 4 x 4 and 5x 5 orthogonal matrices, respectively. They are
given in the appendix together with the representation contents of fredds. Since the
generatorsA’ and C’ satisfy the generation relatiof® = B”® = C’?, with C’ = A’B’ one
can compute the generat&' from the relationB’ = A’7C’. One can easily show that
B®=1.

From the appendix we note that the field

1
= 732£[6J?5X1 — 24625 — 67/ TTx9 4 24/66513] (42)

transforms as a trivial representation of the icosahedral group. The figlds)s, n4)
transform as a triplet of much as thg Wy, W,, W3) do. The other fields

(ns, ne, N7, N8) and (M9, M0, N11, N12, N13)

transform respectively as four-and five-dimensional irreducible representatiohsWwhen

the fields (12, n3, n4) are gauged away by an SO(3) transformation giving the non-zero
vacuum expectation value tg, (1) = vy, the symmetry is broken to the icosahedral
group. The original fields which gain the expectation values proportionéj;fo= v, are
found to be

(¢(66)) = (¢(6—6)) = Y35Ty;

(¢ (64) = (¢(6— 4)) = — V2T, )
(¢(62) = <¢<6 —2)) = -3 1y,

(¢(60)) = YLy,

The other fields take zero expectation values. All the gauge bosons gain equal masses given
by my = «/ﬂvl.

Before concluding this section we would like to note the little grodpsand O of
j = 6. With respect to the irreducible representationg’dhe 13-dimensional irreducible
representation of SO(3) can be decomposed as

B=21+1+1"+30 (44)
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which indicates thal’ possesses two trivial representationg i 6. SinceT is a subgroup
of Y one of its trivial representation is characterized by the figld The second trivial
scalar field is some linear combination of thefields which we did not attempt to identify.
Similarly the j = 6 representation can be decomposed as

13=1+1+2+23)+3 (45)

in terms of the irreducible representations of the octahedral g@ug-or the octahedral
groups not a subgroup af the trivial representation in (45) is not the fiejd and should be
computed. This needs some further work. Nevertheless, under the light of these discussions,
it is clear that the octahedral group is a little group of jhe 6 representation. The gauge
bosons transform as the representati@o 3hat the scalar fields belonging to the irreducible
representation 8an be gauged away and the gauge bosons gain equal masses.

6. Discussions

Using the matrix representations of the irreducible representajion, 3, 4, 6 of SO(3)

in the canonical basis we have obtained the matrix representations of the corresponding
little groups. They are transformed into the block-diagonal forms so that the representation
contents of the Higgs scalars turned out to be manifest. Assigning the vacuum expectation
values to the Higgs scalars of the trivial representations of the related little groups, the
SO(3) symmetry is broken to its closed subgroups. Three gauge bosons of SO(3) gain
masses except in the case of the groGps C, and D.,, where W3 remain massless.

What we have not discussed in the text is the problem of pseudo-Goldstone bosons
emerging in these breakings; some general remarks can be made. The number of pseudo-
Goldstone bosons can be predicted in each individual case for which the numbers of Higgs
fields in the trivial representations and the massive gauge bosons are known. For example,
when SO(3)— D, occurs as a spontaneous breaking with the Higgs fields irj the2
representation no pseudo-Goldstone bosons arises since we have two Higgs scalars in
the trivial representations and the remaining Higgs fields are gauged away to yield the
longitudinal degrees of freedom to th& bosons. For the other little groups this is not
the case and the number of pseudo-Goldstone bosons equaisl? minus the number of
trivial representations of the little groups for all cases except for the fact thatdyjis 1)
minus the number of trivial representations for the groaps C, and D..

If SO(3) is embedded in a larger local symmetry and this larger symmetry is broken
to the closed subgroups of SO(3), it is then possible that these pseudo-Goldstone bosons
could be absorbed by the additional gauge bosons of the larger symmetry. If any closed
subgroup of SO(3) is going to be a residual symmetry in some kind of GUT breaking, SO(3)
symmetry has to be a component of the larger symmetry to avoid the pseudo-Goldstone
bosons. The spontaneous breaking of GUT, with or without horizontal symmetry, to a
theory with a residual finite subgroup of SO(3) induces the cosmic strings which can be
characterized by the conjugacy classes of the finite subgroups of SU(2). Although there
are a number of interesting works in the literature [6], this program requires more detailed
analysis and is deferred for a further study.

Analogous structures, in the case of liquid crystals, have been suggested where the line
defects are associated with the conjugacy classes of the binary polyhedral groups [3, 4].
Similar structures are expected in the phase transitions of the early universe where a GUT
breaking may involve a closed subgroup of SO(3). In the light of the foregoing discussions
our work constitutes a mathematical framework to implement such studies both in the field
of liquid crystals and/or in cosmic strings.
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A connection between the present work and the ADE series of the affine Lie algebras
can be made where the McKay correspondence may play a fundamental role. A partial
success has already been achieved [10] but definitely needs further investigations. It is also
desirable to study the correspondence between the present method of symmetry breaking
of SO(3) and the one made by tensor fields, which seems to be more appropriate in the
liquid crystal phenomena. A detailed study of the symmetry breaking patterns for the
j = 3 representation including the relations betweendglgn) fields and the higher rank
symmetric tensor fieldg,,.... will be discussed elsewhere [14].
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Appendix

The matrices used in (41) are as follows:

1|:_t o 1:| T=3(1++5
2 -1 7 o

-1/3 V3 J5/3 -1/3
2| -2/5/3 0 Y3  J/5/3
-2/4/3 0 —5/3 -1

1 3-.5 -5 3+4/5 —2J5
1| —3++5 —4 —V3(1+/5) 0 4
N=>| —v/15 31++5 -1 V3(-1++5 2V3 |. (48)
8l 3445 0 V3(=1+/5) 4 4
25 4 —2J/3 -4 0

The irreducible representations 3, 4, 5 of the icosahedral group and thefields are

Ling = 5 [6v/35x1 — 2v/4625 — 6v77x9 + 2v/66x13] (49)

Mo = 5, 5[2/3(83— 33vE) x3 + 6y 117 + 3v5) x7 + 6y 223 — v/5) xu1]
81 ne = 325[-2/383+ 33VB) x4 — 6107 — 3VB)xs + 6223 + VE)x1] O

[—18v/10x2 4+ 8v/33x6 + 6v/22x10]

_ 1
s = 3208
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= Szl 5¢/221 — 2+/110x2 — 14v/15x5 — 8v/3x6 + 11v/10x0
— V/2x10 + 2v/105x13]
Mo = 52516y 113 — V5) xs — 6/ 113+ vB) xa — 2//3(23+ 3V 17
" + ZMXB + 2/3(3 4 5v5) x11 + 2v3(3 — 5V5) x12] (51)
T = ﬁ[—«/ﬁ@(l +10v22x, — 14+/3x5 + 8v/15x6 + 11v/2x9
+ 141010 + 2v/21x13]
ng = Tifs[—&/ll(S —VB)xs — 6y 113+ V5 x4 + me
+ zm X8 — 2v/3(3 4 5v/5) x11 — 24/ 6(67 — 15v/5) x12]
1o = 2337~ 21V 0+ 3227+ TV
— /15(47 — 21v/5) xg + 3/ 14(27 + 7v/5) x13]
N0 = 32¢6[ 2v/66x2 — 24v/5x6 + 10v/30x10]
mi= 5 [—3\/ 1127+ 75 x1 — \/ 6(47 — 21V/5) x5
5= — 3\/ 527+ 7/5)xe — \/ 42(47 — 21v/5) x14] (52)
12= 556y 11(7 + 3vB) x3 + 2/ 1547 - 21V5) x7
+2\/6(23+ 3v/5) x11]
N3 = 5[0y 117 — 3v5)xa + 2\/mxe
+2,/6(23— 3v5) x12].
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